Fullscreen
Loading...
 

ISC-PIF Publications

Fast Prev Item: 26/493 Fast Next Last Item
1 24 25 26 27 28 76 493

View Item

User Jean-Baptiste Rouquier
title Automatic filters for the detection of coherent structure in spatiotemporal systems
Authors Cosma Shalizi, Robert Haslinger, Jean-Baptiste Rouquier, Kristina Klinkner, and Cristopher Moore
Source Physical Review E, 73(3):036104
Year 2005
Type Journal

Optional Infos

Abstract Most current methods for identifying coherent structures in spatially-extended systems rely on prior information about the form which those structures take. Here we present two new approaches to automatically filter the changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity filtering, is a modification of the local Lyapunov exponent approach suitable to cellular automata and other discrete spatial systems. The other, local statistical complexity filtering, calculates the amount of information needed for optimal prediction of the system's behavior in the vicinity of a given point. By examining the changing spatiotemporal distributions of these quantities, we can find the coherent structures in a variety of pattern-forming cellular automata, without needing to guess or postulate the form of that structure. We apply both filters to elementary and cyclical cellular automata (ECA and CCA) and find that they readily identify particles, domains and other more complicated structures. We compare the results from ECA with earlier ones based upon the theory of formal languages, and the results from CCA with a more traditional approach based on an order parameter and free energy. While sensitivity and statistical complexity are equally adept at uncovering structure, they are based on different system properties (dynamical and probabilistic, respectively), and provide complementary information.
Link http://www.cscs.umich.edu/research/projects/AFICS/
arXiv: nlin.CG/0508001
Bibtex @article{automatic_filters,
author = {Cosma Rohilla Shalizi and Robert Haslinger and Jean-Baptiste Rouquier
and Kristina Lisa Klinkner and Cristopher Moore},
title = {Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems},
url = {http://www.cscs.umich.edu/research/projects/AFICS/},
url2 = {http://www.cscs.umich.edu/~crshalizi/research/AFICS.pdf},
arxiv = {nlin.CG/0508001},
keywords = {filtering; local sensitivity; local statistical complexity; elementary cellular automata; cyclic cellular automata; coherent structures},
url3 = {http://link.aps.org/abstract/PRE/v73/e036104},
doi = {10.1103/PhysRevE.73.036104},
journal = {Physical Review E},
impactfactor = {2.4},
year = {2005},
month = {March},
volume = 73,
number = 3,
pages = {036104},
isbn = {3-540-34383-0},
abstract = {Most current methods for identifying coherent structures in spatially-extended systems rely on prior information about the form which those structures take. Here we present two new approaches to automatically filter the changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity filtering, is a modification of the local Lyapunov exponent approach suitable to cellular automata and other discrete spatial systems. The other, local statistical complexity filtering, calculates the amount of information needed for optimal prediction of the system's behavior in the vicinity of a given point. By examining the changing spatiotemporal distributions of these quantities, we can find the coherent structures in a variety of pattern-forming cellular automata, without needing to guess or postulate the form of that structure. We apply both filters to elementary and cyclical cellular automata (ECA and CCA) and find that they readily identify particles, domains and other more complicated structures. We compare the results from ECA with earlier ones based upon the theory of formal languages, and the results from CCA with a more traditional approach based on an order parameter and free energy. While sensitivity and statistical complexity are equally adept at uncovering structure, they are based on different system properties (dynamical and probabilistic, respectively), and provide complementary information.},
importance = {International journals with review committee},
type_publi = {irevcomlec},
contribution = {I suggested to use statistical complexity as a visual filter,
designed the local sensitivity measure, wrote the code and ran the simulations.}
}
Created Sunday 23 June, 2013 23:40:15


Show php error messages